Advertisement

Robot-assisted Kidney Autotransplantation: A Minimally Invasive Way to Salvage Kidneys

Published:August 06, 2018DOI:https://doi.org/10.1016/j.euf.2018.07.019

      Abstract

      Background

      Kidney autotransplantation (KAT) is the ultimate way to salvage kidneys with complex renovascular, ureteral, or malignant pathologies that are not amenable to in situ reconstruction. A minimally invasive approach could broaden its adoption.

      Objective

      To describe operative technique, perioperative complications, and early functional outcomes of robot-assisted kidney autotransplantation (RAKAT).

      Design, setting, and participants

      Retrospective review of prospectively collected data regarding consecutive patients undergoing RAKAT between March 2017 and February 2018 at two university hospitals.

      Intervention

      RAKAT.

      Outcome measurements and statistical analysis

      Technical feasibility, perioperative complications, and early functional results.

      Results and limitations

      Seven patients underwent RAKAT (three male and four female; five left and two right; one totally intracorporeal) for complex ureteral strictures (n = 5), severe left renal vein nutcracker (n = 1), and loin pain hematuria syndrome (n = 1). Two patients underwent bench vascular reconstruction and one patient underwent ex vivo flexible ureterorenoscopy. No patient needed open conversion. Median operative and console time was 370 and 255 min, respectively, with median vascular and ureteral anastomosis time of 28 and 23 min, respectively. Median warm, cold, and rewarming ischemia time was 2, 178, and 44 min, respectively. One major postoperative complication occurred—wound dehiscence needing wound revision (grade 3b). Median hospital stay was 5 d. At 3 mo, all patients were free of indwelling stents, pain, or hematuria. Median serum creatinine at 3 mo was 0.80 mg/dl and median calculated autotransplant glomerular filtration rate did not drop significantly.

      Conclusions

      RAKAT is feasible, safe, and results in good functioning of the autotransplant in selected patients with complex ureteral strictures, loin pain hematuria, or severe nutcracker syndrome. Larger studies with longer follow-up are needed to confirm these findings and to test whether RAKAT is feasible for other KAT indications.

      Patient summary

      We describe the first series worldwide of a minimally invasive technique for kidney autotransplantation. Robot-assisted kidney autotransplantation is a safe and feasible approach to prevent nephrectomy for intractable symptoms in selected patients with complex ureteral or renal pathology.

      Keywords

      To read this article in full you will need to make a payment

      References

        • Hardy J.D.
        High ureteral injuries. Management by autotransplantation of the kidney.
        JAMA. 1963; 184: 97-101
        • Alameddine M.
        • Moghadamyeghaneh Z.
        • Yusufali A.
        • et al.
        Kidney autotransplantation: between the past and the future.
        Curr Urol Rep. 2018; 19: 7
        • Azhar B.
        • Patel S.
        • Chadha P.
        • Hakim N.
        Indications for renal autotransplant: an overview.
        Exp Clin Transplant. 2015; 13: 109-114
        • Ruiz M.
        • Hevia V.
        • Fabuel J.J.
        • Fernandez A.A.
        • Gomez V.
        • Burgos F.J.
        Kidney autotransplantation: long-term outcomes and complications. Experience in a tertiary hospital and literature review.
        Int Urol Nephrol. 2017; 49: 1929-1935
        • Cowan N.G.
        • Banerji J.S.
        • Johnston R.B.
        • et al.
        Renal autotransplantation: 27-year experience at 2 institutions.
        J Urol. 2015; 194: 1357-1361
        • Chin J.L.
        • Kloth D.
        • Pautler S.E.
        • Mulligan M.
        Renal autotransplantation for the loin pain-hematuria syndrome: long-term followup of 26 cases.
        J Urol. 1998; 160: 1232-1235
        • Zubair A.S.
        • Cheungpasitporn W.
        • Erickson S.B.
        • Prieto M.
        Clinical and safety outcomes of laparoscopic nephrectomy with renal autotransplantation for the loin pain-hematuria syndrome: a 14-year longitudinal cohort study.
        J Evid Based Med. 2016; 9: 84-90
        • Moghadamyeghaneh Z.
        • Hanna M.H.
        • Fazlalizadeh R.
        • et al.
        A nationwide analysis of kidney autotransplantation.
        Am Surg. 2017; 83: 162-169
        • Fabrizio M.D.
        • Kavoussi L.R.
        • Jackman S.
        • Chan D.Y.
        • Tseng E.
        • Ratner L.E.
        Laparoscopic nephrectomy for autotransplantation.
        Urology. 2000; 55: 145
        • Tran G.
        • Ramaswamy K.
        • Chi T.
        • Meng M.
        • Freise C.
        • Stoller M.L.
        Laparoscopic nephrectomy with autotransplantation: safety, efficacy and long-term durability.
        J Urol. 2015; 194: 738-743
        • Meng M.V.
        • Freise C.E.
        • Stoller M.L.
        Expanded experience with laparoscopic nephrectomy and autotransplantation for severe ureteral injury.
        J Urol. 2003; 169: 1363-1367
        • Gordon Z.N.
        • Angell J.
        • Abaza R.
        Completely intracorporeal robotic renal autotransplantation.
        J Urol. 2014; 192: 1516-1522
        • Lee J.Y.
        • Alzahrani T.
        • Ordon M.
        Intra-corporeal robotic renal auto-transplantation.
        Can Urol Assoc J. 2015; 9: E748-E749
        • Araki M.
        • Wada K.
        • Mitsui Y.
        • et al.
        Robotic renal autotransplantation: first case outside of North America.
        Acta Med Okayama. 2017; 71: 351-355
        • Wagenaar S.
        • Nederhoed J.H.
        • Hoksbergen A.W.J.
        • Bonjer H.J.
        • Wisselink W.
        • van Ramshorst G.H.
        Minimally invasive, laparoscopic, and robotic-assisted techniques versus open techniques for kidney transplant recipients: a systematic review.
        Eur Urol. 2017; 72: 205-217
        • Sood A.
        • Ghosh P.
        • Jeong W.
        • et al.
        Minimally invasive kidney transplantation: perioperative considerations and key 6-month outcomes.
        Transplantation. 2015; 99: 316-323
        • Breda A.
        • Territo A.
        • Gausa L.
        • et al.
        Robot-assisted kidney transplantation: the European experience.
        Eur Urol. 2018; 73: 273-281
        • Territo A.
        • Gausa L.
        • Alcaraz A.
        • et al.
        The European experience on robot-assisted kidney transplantation: minimum of one-year follow-up.
        BJU Int. 2018; (In press)https://doi.org/10.1111/bju.14247
        • Menon M.
        • Sood A.
        • Bhandari M.
        • et al.
        Robotic kidney transplantation with regional hypothermia: a step-by-step description of the Vattikuti Urology Institute-Medanta technique (IDEAL phase 2a).
        Eur Urol. 2014; 65: 991-1000
        • Dindo D.
        • Demartines N.
        • Clavien P.A.
        Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey.
        Ann Surg. 2004; 240: 205-213
        • Levey A.S.
        • Coresh J.
        • Greene T.
        • et al.
        Using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate.
        Ann Intern Med. 2006; 145: 247-254
        • Fleming J.S.
        • Zivanovic M.A.
        • Blake G.M.
        • Burniston M.
        • Cosgriff P.S.
        • British Nuclear Medicine S
        Guidelines for the measurement of glomerular filtration rate using plasma sampling.
        Nucl Med Commun. 2004; 25: 759-769
        • Beysens M.
        • De Groote R.
        • Van Haute C.
        • Tailly T.
        • Lumen N.
        • Decaestecker K.
        Robotic lingual mucosal onlay graft ureteroplasty for proximal ureteral stricture.
        Eur Urol. 2018; 17e1935
        • Sood A.
        • Jeong W.
        • Ahlawat R.
        • et al.
        Minimally invasive renal autotransplantation.
        J Surg Oncol. 2015; 112: 717-722
        • Doumerc N.
        • Roumiguie M.
        • Rischmann P.
        • Sallusto F.
        Totally robotic approach with transvaginal insertion for kidney transplantation.
        Eur Urol. 2015; 68: 1103-1104
        • Olsson C.A.
        Ileal ureter and renal autotransplantation.
        Urol Clin North Am. 1983; 10: 685-697
        • Wolff B.
        • Chartier-Kastler E.
        • Mozer P.
        • Haertig A.
        • Bitker M.O.
        • Roupret M.
        Long-term functional outcomes after ileal ureter substitution: a single-center experience.
        Urology. 2011; 78: 692-695
        • Armatys S.A.
        • Mellon M.J.
        • Beck S.D.
        • Koch M.O.
        • Foster R.S.
        • Bihrle R.
        Use of ileum as ureteral replacement in urological reconstruction.
        J Urol. 2009; 181: 177-181
        • Velasquez C.A.
        • Saeyeldin A.
        • Zafar M.A.
        • Brownstein A.J.
        • Erben Y.
        A systematic review on management of nutcracker syndrome.
        J Vasc Surg Venous Lymphat Disord. 2018; 6: 271-278
        • Salehipour M.
        • Rasekhi A.
        • Shirazi M.
        • Haghpanah A.
        • Jahanbini S.
        • Eslahi S.A.
        The role of renal autotransplantation in treatment of nutcracker syndrome.
        Saudi J Kidney Dis Transpl. 2010; 21: 237-241